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Abstract. Ray propagation over long distances through a sinusoidal volume grating, where the
refractive index varies perpendicular to the direction of incidence, is characterized by a proliferation
of caustics. These dominate the distribution of directions (momentum density) of emerging rays.
For this integrable system with one-dimensional transverse motion, the ergodic average of the
momentum density is calculated exactly. For the corresponding waves, the intensities of the
diffracted beams are calculated from the Raman–Nath equation. In the limit when a semiclassical
parameter is small, the long-distance average agrees very well with the ergodic ray momentum
density. Semiclassical scalings of the fluctuations of beam intensities about the ergodic average
are predicted for the caustic curves and their cusp points.

1. Introduction

We will consider waves with vacuum wavenumberk, travelling in theξ direction, incident
normally on a medium that varies periodically and weakly in theη direction; thus the refractive
index of this ‘volume grating’ is

n(η) = n0 + n1 cosqη (n1� n0). (1)

This is an old problem. Originally it described the diffraction of light by ultrasound (see Berry
(1966) for a review to 1966); now it has re-emerged in the diffraction of beams of atoms by
beams of light (Adamset al1994), withn(η) = √(1− V (η)/E), whereE is the energy of the
atoms andV (η) the potential energy of their interaction with the light. The waves leaving the
medium after travelling a distanceξ will consist of many Bragg-diffracted beams, travelling
in directions making angles sin−1(mq/k) to theξ axis (m integer); we wish to calculate their
intensitiesIm(ξ).

Here our emphasis will be on the limit of largeξ and short wavelength, where
familiar approximations—perturbation, semiclassical, finitely-many beams—break down.
The difficulty arises because of the proliferation of caustics with increasingξ . Our main
point will be that although theIm(ξ) fluctuate strongly withξ their average over short ranges
of ξ can be calculated accurately by ergodic averaging over the ‘whorls’ generated by the
family of rays, as envisaged by Berry and Balazs (1979). A related application of ergodicity
justifies commonly-used approximations in the theory of particle channelling (Ellison and
Guinn 1976, Adamset al 1994).
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2. Rays, whorls and caustics

The simplest way to calculate the rays, regarded as curvesη(ξ), is from Snell’s law: if
dη(ξ)/dξ ≡ tanα(ξ), then

n(η) cosα(ξ) = constant= n(η0) cosα(0) (2)

where η0 labels the rays in the family by the height at which they enter the medium.
Incorporating the initial condition(dη(ξ)/dξ)(ξ = 0) = 0 (normal incidence) enables (2)
to be written (

dη

dξ

)2

=
(
n(η)

n(η0)

)2

− 1≈ 4
n1

n0

(
sin2

(
1

2
qη0

)
− sin2

(
1

2
qη

))
. (3)

This enablesξ to be evaluated as an elliptic integral, whose inversion give the raysη(ξ) as
elliptic functions. Natural dimensionless variables are

y ≡ 1

2
qη x ≡ q

√
n1

n0
ξ (4)

with ranges(06 x <∞,−π/26 y 6 π/2). The rays are

y(x; y0) = sin−1[siny0 sn(x +K(sin2 y0)| sin2 y0)] (5)

where the complete elliptic integralK(m) and the elliptic function sn(u|m) are defined in
Abramowitz and Stegun (1972).

As in many paraxial situations, it is helpful to think ofx as a time variable, and regard the
rays (5) as generated by a Hamiltonian for the one-dimensional transverse motion. The choice

H(y, p) = 1
2(p

2 + sin2 y) (6)

gives the rays (5) and the conjugate ‘momentum’, giving the direction of the rays atx,

p(x; y0) = dy(x; y0)

dx
= siny0 cn(x +K(sin2 y0)| sin2 y0) (7)

with range(−16 p 6 1). Obviously the motion is integrable, with trajectories given explicitly
by (5) and (7).

Figure 1 shows the evolution of the family of rays iny andp. They picture was first
calculated by Lucas and Biquard (1932), and both were studied in detail by Nomoto (1951a).
Caustics dominate, reflecting the fact that each point(x, y), and each point(x, p), can be
reached by more than one ray. The caustics are pairs of smooth curves connected by cusps.
These are the focal points of the small-y (harmonic-oscillator) limit of (6); they cusps are at
x = (n + 1

2)π , and thep cusps atx = nπ .
The multivaluedness can be easily comprehended by phase-space pictures for different

values ofx (figure 2), each showing the rays in the family as a curve. Forx = 0, the curve is a
straight line along they axis, with points labelled byy0. Each point evolves by moving round
a closed contour (energy level) of the Hamiltonian (6), but the differenty0 rotate at different
speeds. Thus the initial curve coils into a whorl, winding more tightly with increasingx. We
call the whorl atx thex whorl; it is represented by a phase-space densityd, whose equation is

d(y, p; x) = 1

π

∫ π/2

−π/2
dy0 δ(y − y(x; y0))δ(p − p(x; y0)). (8)

For eachx, the momenta of the different rays reaching each pointy are given by the
intersections of the vertical liney with the x whorl, and they caustics are the tangencies,
where∂y/∂y0 = 0. Similarly, the positions of the different rays reaching each pointp are
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Figure 1. Rays in configuration (a) and momentum (b) space, generated from equations (5) and
(7) for a range of initial heightsy0.

given by the intersections of the horizontal linep with thex whorl, and thep caustics are the
tangencies, where∂p/∂y0 = 0. Evidently caustics proliferate asx increases.

The momentum density of the ray family atx, or, equivalently, the classical far-field
differential scattering cross section from a unit cell of the refractive-index profile, normalized
to unity, is

I (p; x) =
∫ π/2

−π/2
dy d(y, p; x)

= 1

π

∫ π/2

−π/2
dy0 δ(p − p(x; y0))

= 1

π

∑
i

∣∣∣∣∂p(x; y0)

∂y0

∣∣∣∣−1

y0=y0i (p;x)
(9)

wherey0i (p; x) are the initial heights of the rays (labelled byi) reachingp atx. Figure 3 shows
momentum densities for severalx. The caustic singularities, where∂p/∂y0 = 0, are obvious,
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Figure 2. Whorls in phase space generated parametrically from (5) and (7) with(−π/2 6 y0 6
π/2), for (a) x = 0; (b) x = 1; (c) x = 2; (d) x = 5; (e) x = 10; (f ) x = 20.
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Figure 3. Momentum densities for (a) x = 2; (b) x = 5; (c) x = 10; (d) x = 20, calculated
numerically from (7) and the second equation in (9) by replacing theδ function by a narrow
Gaussian.

as is their proliferation withx: the number of caustics across the density atx is 2 Int(x/π).
The position density, that is the ray intensity as a function ofy, shows similar features.

3. Ergodicity

For very largex, the caustics can be regarded as dense, and we can study the coarse-grained
momentum density, in which the singularities are smoothed away by averaging. To calculate
this, we employ a three-stage process.

First, the point in each whorl associated with the ray labelledy0 is replaced by a normalized
density on the energy contour that it explores ergodically withx, that is, by the microcanonical
density (normalized to unity)

dm(y, p; y0) = δ(H(y, p)−H(y0, 0))∫∫
dy dp δ(H(y, p)−H(y0, 0))

= 1

2K(sin2 y0)
δ(p2 + sin2 y − sin2 y0). (10)

Second,dm is averaged overy0, to obtain the phase-space densityW(y, p)of the smoothed
x whorls for largex, normalized to unity:

W(y, p) = 1

π

∫ π/2

−π/2
dy0 dm(y, p; y0)

=
[
2πK(sin2 y + p2)

√
(sin2 y + p2)(cos2 y − p2)

]−1

2(cosy − |p|) (11)
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Figure 4. Density plot of ‘classical Wigner function’ (11).

(2 denotes the unit step). Figure 4 shows this ‘classical Wigner function’. There are
singularities at the origin, where

W(y, p)→ 1

π2
√
p2 + y2

(p2 + y2→ 0) (12)

and at the classical boundaries|p| = cosy, where

W(y, p)→ 1

π log{8/[cosy(cosy − |p|)]}√2 cosy(cosy − |p|) (|p| → cosy). (13)

Third,W is averaged overy, to get the smoothed momentum densityI (p), normalized to
unity:

I (p) =
∫ π/2

−π/2
dy W(y, p)

= 1

2π

∫ 1

p2

dm

K(m)
√
m(1−m)(m− p2)(1 +p2 −m)

. (14)

Figure 5 shows this function. There are logarithmic singularities atp = 0, whereI diverges
as

I (p)→ A

π2
log

(
4

p2

)
A ≈ 1 (p→ 0) (15)

and atp = 1, whereI vanishes as

I (p)→
[
log

(
16

(1− |p|)
)]−1

(|p| → 1). (16)
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Figure 5. Ergodic momentum density (14).

4. Diffracted beam intensities

Waves traversing the volume grating with vacuum wavenumberk (and energyE = h̄2k2/2m
for diffraction of particles with massm) satisfy the Helmholtz equation

(∂2
ξ + ∂2

η + k2n2(η))ψ(ξ, η) = 0. (17)

For smalln1, wave propagation is paraxial. Thus, with the variablesx, y (equation (4)),
and the rescaled wavefunction9, defined by

ψ(ξ, η) ≡ exp(ikn0ξ)9(x, y) (18)

the term in∂2
x9 can be dropped, and9 satisfies the paraxial wave equation

i
√
ρ∂x9(x, y) = (− 1

8ρ∂
2
y − cos(2y))9(x, y) (19)

involving the wave parameter

ρ ≡ q2

n1n0k2
. (20)

The short-wave (semiclassical) limit isρ → 0.
We note in passing that (19) has the form of a time-dependent Schrödinger equation: in

terms of the effective Planck constant ¯h = (
√
ρ)/4, momentum operatorp = −ih∂y , and

Hamiltonian (6), (19) can be written

ih̄∂x9 = (H(x, y)− 1
4)9. (21)

The amplitudesAm(x) of diffracted beams emerging from the volume grating are the
coefficients in the Fourier expansion (momentum representation) of9:

ψ(x, y) =
∞∑

m=−∞
Am(x) exp(2imy). (22)
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From (19), and the normal incidence condition, the amplitudes satisfy the differential-
difference equation of Raman and Nath (1936):

2i
√
ρ∂xAm(x) = ρm2Am(x)− Am−1(x)− Am+1(x) Am(0) = δm0. (23)

The diffracted beam intensities are (reinstating the dependence onρ)

Im(x; ρ) = |Am(x)|2. (24)

The coupled equations (23) can be solved directly by numerical integration, or by diagonalizing
the matrix on the right-hand side, whose eigenfunctions are Fourier coefficients of Mathieu
functions (Berry 1966); analytical implementation of the second method leads to interesting
asymptotics (O’Dell 1999).

For sufficiently smallρ, that is semiclassically, we expect the pattern of intensitiesIm for
fixedx to reflect the ray patterns in momentum space (figure 3). This approach has been used
extensively, for oblique as well as normal incidence (Nomoto 1951a, b). Magnification of
the calculated intensities near the caustic lines and cusp points inx,m space reveals the Airy
and Pearcey diffraction patterns expected on the basis of catastrophe optics (Berry and Upstill
1980); we do not show these features here because they are unsurprising nowadays—and the
fact that the diffraction catastrophes are sampled by a discrete variable (herem) is also not
new (Berry 1975).

However, in the large-x limit we are pursuing here, detailed correspondence with the ray
patterns fails, because of the proliferation of caustics. When these are close, the wave (Airy)
pattern decorating each of them is obscured by overlap with those of its neighbours. This is
an instance of a general phenomenon: breakdown of the wave-ray correspondence for long
‘times’, because the finite wavelength limits the ability to discern details of evolving classical
structures as these get increasingly intricate (Berry 1983). (We do not address the related but
incompletely resolved question of whether correspondence fails when interference between
the contributing rays is incorporated—see Tomsovic and Heller (1991), and Schulman (1994)
for a discussion of the presumably more difficult situation where the rays are chaotic.)

Even for largex, however, we expect the significant diffracted beams to be those, with
|m| 6 M(ρ), that lie within the range of ray directions. By considering the Bragg angle and ray
deflections in the original(ξ, η) variables—or, alternatively, the spacing between eigenvalues
of momentump = −i[(

√
ρ)/4]∂y , we find

mmax(ρ) = 2√
ρ
. (25)

Figure 6 shows two sample patterns of diffracted beams, calculated forρ = 8× 10−5.
Equation (25) givesmmax(ρ) = 100

√
5≈ 224, in good agreement with the calculations. From

the results of section 2, the corresponding ray patterns would involve about 60 caustics. We
would not expect the diffraction patterns to resolve these, and clearly they do not. The only
unambiguous correspondence is between the very large peak at the origin in figure 6(a) and the
30th cusp in the ray pattern. Otherwise, the diffraction patterns show a disorderly arrangement
of peaks of different sizes.

However, we can compare averages of the diffraction intensities with the predictions
(equation (14) and figure 5) of the ergodic theory. Figure 7 shows a momentum average
of the intensities in figure 6(b). Evidently the ergodic theory captures the main features
of the diffraction, but the averaging inevitably smooths the singularities of (14) atp = 0
and |p| = 1, and this discrepancy gets worse if the smoothing is increased to eliminate the
diffraction oscillations.

For a more discriminating comparison, we need anx (‘time’) average. Figure 8 shows
that the ergodic density, including its singularities, is reflected very accurately in the data. The
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Figure 6. Diffracted beam intensities, calculated from (23) and (24) forρ = 8× 10−5 and (a)
x = 30π , (b) x = 30.5π .

only diffraction oscillations not eliminated by averaging are nearp = 1; these are associated
with the Airy-function interference of the two rays connected with the extreme momentum
caustic, which is always isolated and so uncontaminated by interference from other rays.

5. Fluctuations

Around the ergodic average, the intensities fluctuate wildly, both inm (figure 6) andx.
As ρ decreases, the diffraction intensities should concentrate around the ray caustics, and
the fluctuations should get stronger. They are an example ofsingularity-dominated strong
fluctuations(Berry 1977, 1982, 1986). To characterize them, we define the moments

Mn(x; ρ) ≡
∞∑

m=−∞
[Im(x; ρ)]n (26)

and seek the leading-orderρ dependence of these moments asρ → 0.
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Figure 7. Thick line: Gaussian smoothing of the intensities in figure 6(b), with a rms width of 14
beams; thin line: ergodic momentum distribution (14), scaled to makepmax= 2/

√
ρ.

Figure 8. Dots: intensitiesIm of diffracted beams averaged over the range 30π 6 x 6 40π , for
ρ = 8× 10−5, scaled and normalized in the range−1 6 p 6 1; full curve: ergodic momentum
density (14).

In the calculation of this dependence, it is convenient whenρ is small to regardIm as a
discrete sampling of a diffraction functionI (p) of the continuous momentum variablep (we
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suppress thex andρ dependence). Sums and integrals are related by normalization

1=
∞∑

m=−∞
Im =

∫ 1

−1
dp I (p) ≈ 1

mmax(ρ)

∞∑
m=−∞

I

(
m

mmax(ρ)

)
(27)

with mmax(ρ) given by (25). Thus

Im ≈
√
ρ

2
I (p) (28)

and the moments are

Mn =
(ρ

4

)(n−1)/2
∫ 1

−1
dp (I (p))m. (29)

Form > 1 andρ small, the integral ofI (p) will be dominated by caustics, in ways well
understood, and applied to the calculation of wavefunction moments by Berryet al(1983). Ifx
is not close to a multiple ofπ , the caustics are the smooth fold catastrophe curves (figure 1(b)).
Near each of these,I (p) rises to values of order(wavelength)−1/3 in a p interval of size
(wavelength)2/3 (Berry and Upstill 1980). From (20), the wavelength is proportional toρ.
Thus the integral in (29) can be estimated, giving the moments

M fold
n ∝ ρ(n−1)/2ρ−(n−2)/6. (30)

By contrast, the sum ofnth powers of 2mmax + 1 independent random variablessi ,
normalized so that their size is of order 1/mmax, is

mmax∑
−mmax

(si)
n ∝ m−(n−1)

max ∝ ρ(n−1)/2. (31)

Comparing with (30), we see that the fluctuations associated with caustics are much stronger.
If x is a multiple ofπ , the integral overp is dominated by crossings of cusps (figure 1(b)),

where the catastrophe scalings are different:I (p) rises to values of order(wavelength)−1/2 in
ap interval of size(wavelength)1/2. Thus (30) is replaced by

Mcusp
n ∝ ρ(n−1)/2ρ−(n−1)/4 (32)

from which it is clear that the fluctuations associated with cusps are greater than those at fold
caustic curves.

Our numerical explorations of these predictedρ scalings of the moments are at an early
stage. Whenx is not large, we have seen the emergence of the power-laws (30) and (32) as
ρ gets smaller. But whenx > π the overlap of diffraction fringes associated with different
caustics slows down the asymptotics, requiring values ofρ so small (less than 10−12) that
special methods (O’Dell 1999) must be employed to solve the Raman–Nath equation.

References

Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions(Washington, DC: National Bureau of
Standards)

Adams C S, Sigel M and Mlynek J 1994 Atom opticsPhys. Rep.240143–210
Berry M V 1966The Diffraction of Light by Ultrasound(New York: Academic)
——1975 Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces

J. Phys. A: Math. Gen.8 566–84
——1977 Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short wavesJ. Phys.

A: Math. Gen.102061–81
——1982 Universal power-law tails for singularity-dominated strong fluctuationsJ. Phys. A: Math. Gen.152735–49
——1983Les Houches Lecture Seriesvol 36, ed G Iooss,R H G Helleman and R Stora (Amsterdam: North-Holland)

pp 171–271



3582 M V Berry and D H JO’Dell

——1986Wave Propagation and Scatteringed B J Uscinsci (Oxford: Clarendon) pp 11–35
Berry M V and Balazs N L 1979 Evolution of semiclassical quantum states in phase spaceJ. Phys. A: Math. Gen.12

625–42
Berry M V, Hannay J H and Ozorio de Almeida A M 1983 Intensity moments of semiclassical wavefunctionsPhysica

D 8 229–42
Berry M V and Upstill C 1980 Catastrophe optics: morphologies of caustics and their diffraction patternsProg. Opt.

18257–346
Ellison J A and Guinn T 1976 Statistical equilibrium, planar channelling, and the continuum modelPhys. Rev.B 13

1880–3
Lucas M and Biquard P 1932 Propriét́es optiques des milieux solides et liquides soumis aux vibrationsélastiques ultra
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